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Abstract—Federated learning (FL) enables massive clients
to collaboratively train a global model by aggregating their
local updates without disclosing raw data. Communication has
become one of the main bottlenecks that prolongs the training
process, especially under large model variances due to skewed
data distributions. Existing efforts mainly focus on either single
momentum-based gradient descent, or random client selection
for potential variance reduction, yet both often lead to poor
model accuracy and system efficiency. In this paper, we propose
FedMoS, a communication-efficient FL framework with coupled
double momentum-based update and adaptive client selection,
to jointly mitigate the intrinsic variance. Specifically, FedMoS
maintains customized momentum buffers on both server and client
sides, which track global and local update directions to alleviate
the model discrepancy. Taking momentum results as input, we
design an adaptive selection scheme to provide a proper client
representation during FL aggregation. By optimally calibrating
clients’ selection probabilities, we can effectively reduce the sam-
pling variance, while ensuring unbiased aggregation. Through a
rigid analysis, we show that FedMoS can attain the theoretically
optimal O(T−2/3) convergence rate. Extensive experiments using
real-world datasets further validate the superiority of FedMoS,
with 58%-87% communication reduction for achieving the same
target performance compared to state-of-the-art techniques.

I. INTRODUCTION

Recent years have witnessed an enormous success achieved
by machine learning technology. However, a long-standing
concern remains with potential leakage of user privacy, where
the data samples utilized to train machine learning models may
contain users’ sensitive and confidential information. Amid
such privacy concern, federated learning (FL) has been widely
recognized as a promising paradigm which facilitates massive
clients (e.g., edge devices) to collaboratively build a global
model without centralizing training data [1]. In a typical FL
system, there is a central parameter server orchestrating geo-
distributed clients to aggregate their local models in multiple
rounds of synchronization. Thus far, a wide spectrum of FL ap-
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plications has been deployed, such as keyword prediction [2],
image classification [3] and human activity recognition [4].

Communication often becomes the primary bottleneck for
FL due to frequent model synchronization. Even worse, con-
nections between many edge clients and central server can be
intermittent and unstable, while the constrained server capacity
also imposes restrictions on the number of clients a server
can simultaneously accommodate. Both lead to a growing
interest in reducing communication during federated training.
In particular, FedAvg, a de facto communication-efficient FL
algorithm, was proposed by requesting clients to perform
multiple steps of local stochastic gradient descent (SGD)
before sending their updates, i.e., to decrease synchronizing
frequency at the cost of increased computation on clients [5].
However, unlike datacenter based distributed learning, FL pro-
hibits collecting and shuffling data beforehand so that training
sample distributions across isolated clients are highly skewed
and non-i.i.d. [6]. This will cause local model updates to
gradually diverge, a.k.a. client drift, thereby leading to biased
global model with large variance and prolonging the training
process. How to enhance the communication efficiency under
client drift is of paramount importance to the FL community.

A surge of interest has been attracted to nested variance re-
duction for accelerating training convergence and thus enhanc-
ing the communication efficiency. One popular workaround is
to employ the momentum-based SGD optimization to smooth
out the noise of stochastic gradients [7]. In general, a client or
server can maintain a momentum buffer to track the stochastic
updates, where the influence of previous update directions is
preserved when renewing model parameters [8], [9]. This way,
a momentum SGD enjoys a faster convergence with reduced
inherent variance, which greatly reduces the communication.
Despite potential benefits of momentum design, cherry-picking
a subset of representative clients participating in FL is equally,
if not more important, to improve the training convergence and
model accuracy [10]. Considering the existence of selection
bias, it is desirable to choose the best client subset for sampling
variance reduction. Although many efforts have been devoted
to momentum implementation and client sampling, they were
largely explored separately. In broad strokes, momentum



SGD often involves local updates on each selected client,
meanwhile the optimal sampling decision needs to be made
based on momentum results. Therefore, it is imperative to
jointly address these two issues together to achieve favorable
FL convergence and accuracy. This, however, is challenging
due to the following reasons.

First and foremost, the inter-dependence between momen-
tum SGD and client selection requires an integrated design
in the FL framework, rather than a separate characterization
in previous works [7], [11]. Nevertheless, existing selection
schemes are mostly implemented atop of plain gradient-based
algorithms (FedAvg [5], FedProx [6], etc.). A joint optimiza-
tion of momentum and selection remains largely unexplored.
Worse yet, bias may coexist with the model update and client
sampling [12], which will hinder the learning performance. As
a result, it is necessary to propose a co-design of momentum-
based update and client selection for ensuring unbiasedness,
meanwhile collectively reducing the intrinsic model variance.
Second, FL includes stochastic updates on both sides of the
central server and distributed clients, which makes existing
momentum solutions, mainly proposed for single-side gradi-
ent direction tracking, insufficient to accomplish a favorable
training speedup. Besides, double momentum design requires a
careful coordination between global and local updates to strike
the orderly optimal convergence result, yet may still behave
poorly when facing extreme client drift. This demands more
practical countermeasures in the momentum implementation,
while also achieving a rigorous theoretical guarantee. Third,
to derive the optimal selection scheme usually needs many
extra operations (e.g., communications and computations) to
acquire the client information for a wiser client sampling [13],
[14], which however can be unduly expensive in practice. How
to optimize the selection cost, even avoiding those additional
server-client operations, in choosing the best participants from
all clients is still under-examined.

In this paper, we propose a novel communication-efficient
FL framework by jointly optimizing momentum-based update
and client selection, which can achieve better convergence
rate and model accuracy, especially under highly skewed data
distributions. To tackle the client drift issue, we first develop
a double momentum SGD, where two customized momentum
buffers are maintained on server and client sides so as to
smooth global and local noisy update directions, respectively.
In particular, our double momentum solution can be applied
to a wide range of sampling schemes as long as they remain
unbiased. Taking momentum results as input, we then devise
an adaptive client selection algorithm to provide a proper
representation for each client during FL aggregation. The key
insight is that round-by-round model synchronizations require
to dynamically sample the best participants that will facilitate
higher learning performance. In general, our selection scheme
can ensure unbiased aggregation without additional costly
server-client communications and computations. In a nutshell,
by tightly coupling the selection process with momentum
design, we are able to effectively reduce the intrinsic variance
induced by stochastic model update and client sampling. We

also validate the efficiency of our approach both theoretically
and empirically. The main contributions are summarized.
• We propose FedMoS, a communication-efficient FL frame-

work with joint double momentum and adaptive selection.
To our best knowledge, this is the first attempt that highlights
the inter-dependence between momentum SGD and client
selection to tame the client drift, thus navigating an effective
co-design for promoting FL convergence and accuracy.

• FedMoS coordinates customized momentum buffers on the
server and client sides to track global and local update di-
rections, which greatly reduces the intrinsic model variance.
Through a rigid analysis, we show that an optimal O(T−2/3)
convergence rate is achieved under partial client participa-
tion and arbitrary aggregation weight, which is also orderly
faster than single momentum or plain gradient-based FL
algorithms. Meanwhile, FedMoS attains favorable empirical
performance even under highly skewed data distributions.

• Based on momentum characterization, FedMoS employs
an adaptive selection scheme to cherry-pick representative
clients for sampling variance reduction. Through optimally
calibrating the sampling probabilities, our unbiased selec-
tion can substantially improve the communication efficiency
without inducing extra server-client operation costs.

• Extensive experiments on real-world datasets corroborate
the superiority of FedMoS over the state-of-the-art ap-
proaches. In particular, we can achieve the highest test accu-
racy with 2.4-7.5 times faster convergence than benchmarks.

II. PRELIMINARY AND SYSTEM OVERVIEW

We start by summarizing the basics of FL, and then present
a high-level overview of FedMoS.

A. Federated Learning

Consider the cross-device FL system with total N clients
N = {1, 2, ..., N} and a central parameter server (PS). Each
client i maintains a local dataset Di containing Di = |Di| data
samples. Define fi(x, ξi) as the loss function which measures
the learning performance of model parameter x under input
training sample ξi ∈ Di. On this basis, the loss of client i is

fi(x) =
1

Di

∑
ξi∈Di

fi(x, ξi). (1)

Under the orchestration of PS, clients will collaboratively train
a machine learning model without disclosing their raw data:

f(x) ≜
∑

i∈N
pifi(x), (2)

where pi signifies the importance of client i with
∑

i∈N pi =
1, and often pi =

Di∑
i∈N Di

. The objective is to find the optimal

parameter for minimizing loss function, i.e., f∗ ≜ minx f(x).
To this end, typical FL algorithms allow clients to perform

multiple local SGD updates before a periodical global syn-
chronization by PS [5], yet communication often becomes the
primary bottleneck. To reduce the communication amount, we
are faced with two non-trivial challenges. First, local datasets
Di,∀i ∈ N are distributed in a non-i.i.d. and unbalanced
fashion across all clients, which introduces large variance and
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Fig. 1: A snapshot of FedMoS architecture.

discrepancy in their local model updates, namely client drift,
so that the training process will be greatly prolonged. Second,
selecting a portion of clients participating in each FL round
can lead to a communication decline, but the incurred sampling
variance may otherwise deteriorate the learning performance.

B. FedMoS Overview

We propose FedMoS by jointly designing double momen-
tum SGD and adaptive client selection to handle the mentioned
challenges. Fig. 1 shows the main architecture, where FedMoS
proceeds in rounds of communication as described below.
• At the beginning of each round t, PS adaptively selects M

out of N clients as participants, denoted by St with |St| =
M , and broadcasts the current global model xt to St;

• Any selected client i ∈ St initializes its local model xt
i,0 =

xt, then separately conducts I steps of momentum SGD on
Eq. (1), and finally sends the updated model xt

i,I to PS;
• PS aggregates the received parameters and performs

momentum-based update to build a new global model xt+1.
1) Double Momentum: FedMoS customizes two momen-

tum buffers for the client and server separately considering
both the coordination and difference between local and global
model updates. Due to skewed data distributions, reducing the
inherent variance in multi-step local updates is our top priority.
Hence, we propose a new variance reduction momentum dt

i,τ

on client side to track the local update direction [15]:

dt
i,τ = ∇̃Bi,τ fi(x

t
i,τ ) + (1− a)

(
dt
i,τ−1 − ∇̃Bi,τ fi(x

t
i,τ−1)

)
, (3)

where ∇̃Bi,τ fi(x
t
i,τ ) ≜

1
B

∑
ξi∈Bi,τ

∇fi(x
t
i,τ , ξi) denotes the

stochastic gradient on batch Bi,τ in τ -th step. Also, a proximal
term µ(xt

i,τ −xt) is fused to further smooth out noise in local
stochastic updates. Here, a and µ are constant coefficients.

On the other hand, PS mainly conducts a one-step global
model update. This motivates us to maintain a Polyak mo-
mentum ut [16] on the server side, which is effective when
coordinating with the aggregated local updates:

ut = βut−1 − 1

ηI

∑
i∈St

wt
i(x

t
i,I − xt), (4)

in which wt
i is the aggregation weight decided by client

selection, β is a coefficient and η implies the training stepsize.
2) Client Selection: In principle, unbiased client sampling

is the common consensus for improving FL performance [17].
A selection is regarded to be unbiased if the expectation of
aggregated global model is equivalent to that of full client
participation, i.e., ESt [wt

i ] = pi,∀i ∈ N .
We propose an adaptive selection scheme that generalizes

multinomial distribution (MD) sampling [17] where PS inde-
pendently selects a client with support N for M times with

Algorithm 1: FedMoS: Double Momentum-Based Up-
date with Adaptive Selection
Input: Coefficients a, η, µ, β, selected client size M ,

sampled data size B, local steps I
1 Initialize global momentum u−1 and model x0;
2 for t = 0, · · · , T − 1 do
3 PS selects M clients St based on adaptive client

selection in Algorithm 2, then broadcasts xt;
4 for client i ∈ St do
5 for τ = 0, · · · , I − 1 do
6 if τ = 0 then
7 Initialize local model xt

i,τ = xt;
8 Set local momentum dt

i,τ = ∇fi(x
t
i,τ );

9 else
10 Randomly sample a mini-batch Bi,τ of

data with size B from Di;
11 Compute dt

i,τ based on Eq. (3);

12 xt
i,τ+1 = xt

i,τ − ηdt
i,τ − µ(xt

i,τ − xt);

13 Send (xt
i,I − xt) to PS;

// Aggregation and momentum SGD at PS

14 Compute ut from Eq. (4), xt+1 = xt − ηIut;

replacement, i.e., St is a multiset where a client may appear
more than once. Concretely, denote lm as the sampled client
in the m-th selection which follows MD such that client i is
picked with probability pi,m. For unbiasedness, wt

i should be:

wt
i =

1

M

∑M

m=1
I(lm = i). (5)

Traditional MD sampling assumes a uniform sampling prob-
ability for each client across M selections, i.e., Pr(lm =
i) = pi,∀m = 1, · · · ,M , which is inflexible and far from
optimal. Considering this, FedMoS specifies MD sampling by
picking St according to M independent distributions {pi,m|i ∈
N}Mm=1, i.e., Pr(lm = i) = pi,m is heterogeneous. Coupled
with the momentum-based update, our selection scheme seeks
to minimize the sampling variance and maintain unbiased ag-
gregation by determining the probabilities {pi,m|i ∈ N}Mm=1.

Since the formal formulation of adaptive client selection
tightly depends on the momentum result, we will defer and
elaborate it in Section IV.

III. DOUBLE MOMENTUM-BASED FEDMOS

In this section, we will illustrate the design of FedMoS.

A. FedMoS Design

Considering single momentum on either server or client side
may be insufficient when data distributions diverge largely, we
propose FedMoS to employ double momentum buffers on both
sides instead. The pseudo-code is presented in Algorithm 1.

Concretely, we implement an unbiased and adaptive selec-
tion (Line 3) in Algorithm 2 to choose clients St, which will
be explored in later section. For each selected client, his local



model updates involve I steps of momentum-based compu-
tation (Line 12), where the stochastic gradient ∇̃Bi,τ fi(x

t
i,τ )

is attained on the sampled batch Bi,τ of data size B in all
steps excluding the first step τ = 0 to remove the initial
error (Lines 6-11). The local momentum dt

i,τ is instantiated
to be the gradient (Line 7), then renewed using ∇̃Bi,τ

fi(x
t
i,τ )

and last-step value dt
i,τ−1 based on Eq. (3). A proximal term

µ(xt
i,τ − xt) is also integrated to further smooth local model

updates. On server side, upon receiving all parameters, global
momentum ut is recalculated, and then global model xt+1 is
updated following the Polyak momentum SGD (Line 14).

Next, we analyze the convergence of FedMoS given unbi-
ased sampling, i.e., not limited to the client selection imple-
mented in Algorithm 2. Prior to the analysis, we first introduce
several common assumptions to assist our later elaborations.

B. Model Assumptions

For analytical tractability, we state the following assump-
tions pertaining to the machine learning model, which have
been made in a fair amount of previous works [18], [19].

Assumption 1 (Smoothness). For each client i ∈ N ,
the stochastic loss fi(x, ξi),∀ξi ∈ Di is L-smooth, i.e.,
∥∇fi(x, ξi)−∇fi(y, ξi)∥ ≤ L∥x− y∥ for all x and y.

Assumption 2 (Bounded Variance). For each client i ∈ N ,
the variance of local stochastic gradient is bounded, i.e.,
E[∥∇fi(x, ξi)−∇fi(x)∥2] ≤ σ2,∀ξi ∈ Di.

Assumption 3 (Bounded Dissimilarity). For each client i ∈
N , the loss function satisfies ∥∇fi(x)−∇f(x)∥ ≤ ς2.

Assumption 4 (PL Condition). Loss function f(x) satisfies ζ-
Polyak-Łojasiewicz (PL) condition if ∥∇f(x)∥2 ≥ 2ζ(f(x)−
f∗) where f∗ ≜ minx f(x).

Assumption 1 also implies that the loss functions fi(x)
and f(x) are L-smooth. Assumption 2 quantifies the local
stochastic variance which can be regarded as intra-client het-
erogeneity, while in contrast Assumption 3 measures the data
heterogeneity across clients. PL condition in Assumption 4
is weaker than the ζ-strongly convexity which is required in
many existing works [13], [20], and we will provide the con-
vergence results with and without this condition, respectively.

C. Convergence Rate

1) Main Results: Given the model assumptions, we now
show the main results of FedMoS, i.e., the convergence rate
pertaining to total communication round T . For ease of expo-
sition, denote pmax = maxi∈N pi as the highest importance.

Theorem 1. Suppose Lη
µ ≤ 1

158
√

N
∑

i∈N p2
i

, Lη ≤ M
2048Npmax

,

η = O(T−2/3), µ = O(T−1/3), a = O(T−1/2), and µI ∈
[1, 9

8 ] with µ ≤ 1
2 . Under Assumptions 1-3, we have:

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ O
(f(x0)− f∗

T 2/3

)
+O

( σ2

T 2/3

)
+O

( ς2

T 2/3

)
.

(6)

Besides, under Assumptions 1-4, we attain:

1

T

T−1∑
t=0

(E[f(xt)]− f∗) ≤ O
(f(x0)− f∗

T 2/3ζ

)
+O

( σ2

T 2/3ζ

)
+O

( ς2

T 2/3ζ

)
.

(7)

The proof is in Appendix A1. Theorem 1 presents a unified
O(T−2/3) convergence rate when PL condition holds or not.
Comparing with extant convergence achievements, we have
the following observations.
• Convergence rate of FedAvg [21] or FedProx [6] is
O(T−1/2), i.e., it needs O(ϵ2) communication rounds to
approach an ϵ-stationary point. Since FedMoS yields an
O(T−2/3) convergence, communications required to reach
an ϵ-stationary point are significantly reduced to O(ϵ3/2),
which has been proved to be optimal for non-convex opti-
mizations [22] and is orderly faster than FedAvg or FedProx.

• Single momentum-based FL algorithms lead to a theoretical
O(T−1/2) convergence rate [7], that is slower than FedMoS.

• FedLOMO [18] and STEM [19] attain a similar O(T−2/3)
convergence result. However, they both consider a uniform
importance, i.e., pi = 1

N ,∀i ∈ N , which plays an important
role in the convergence proof. Besides, STEM is built on full
client participation. By incorporating the proximal term and
arbitrary weight, FedMoS is more flexible and general even
when facing practically skewed data distributions to achieve
better performance via cherry-picking representative clients.
Remark: Theoretical O(T−2/3) holds as long as the client

selection is unbiased, while its implementation, like Algo-
rithm 2, mainly promotes the empirical performance.

2) FedMoS Extension: Previously, the convergence of Fed-
MoS is obtained by instantiating local dt

i,0 to be the gradient
∇fi(x

t
i,0), i.e., initial error is E[∥dt

i,0−∇fi(x
t
i,0)∥2] = 0, and

then using the stochastic gradient on a sampled mini-batch at
the rest I − 1 steps. In fact, we can unify the gradient calcu-
lation throughout the whole I local updates, where the first
sampled batch size is denoted as Bi,0 with initial stochastic
gradient being ∇̃Bi,0

fi(x
t
i,0) and the rest of steps remaining

the same as in Algorithm 1. The corresponding convergence
is derived below with the proof in Appendix A2.

Corollary 1. Set parameters as in Theorem 1, and suppose
Bi,0 = min{Ω(T 2/3), Di},∀i ∈ N . Under Assumptions 1-3,
we attain:

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ O
(f(x0)− f∗

T 2/3

)
+O

( σ2

T 2/3

)
+O

(
σ2

∑
i∈N

1

Bi,0

)
+O

( ς2

T 2/3

)
.

(8)

Besides, under Assumptions 1-4, we have:

1

T

T−1∑
t=0

(E[f(xt)]− f∗) ≤ O
(f(x0)− f∗

T 2/3ζ

)
+O

( σ2

T 2/3ζ

)
+O

(σ2

ζ

∑
i∈N

1

Bi,0

)
+O

( ς2

T 2/3ζ

)
.

(9)



From Eqs. (8)-(9), the convergence rate is still O(T−2/3)

since the term O
(
σ2

∑
i∈N

1
Bi,0

)
or O

(
σ2

ζ

∑
i∈N

1
Bi,0

)
will

vanish if min{Ω(T 2/3), Di} = Di, which boils down to the
original case of Theorem 1. Comparing Theorem 1 with Corol-
lary 1, the main difference lies in the initial error, which is non-
zero and altered by the first batch size Bi,0 for Corollary 1.
Since this error will propagate along with local model updates,
captured by O

(
σ2

∑
i∈N

1
Bi,0

)
or O

(
σ2

ζ

∑
i∈N

1
Bi,0

)
, we need

to bound the corresponding term via adjusting Bi,0 so as to
achieve the same order of convergence result.

D. Proof Outline
Due to space limit, we only provide the proof outline of

Theorem 1, which is composed of a series of lemmas. After-
wards, the proof of Corollary 1 can be similarly characterized.
According to Assumption 1 and FedMoS, we have:

E[f(xt+1)] ≤ E[f(xt)]

+ E[⟨∇f(xt),xt+1 − xt⟩] + L

2
E[∥xt+1 − xt∥2]

= E[f(xt)] + ηIE[⟨∇f(xt),−ut⟩] + L

2
η2I2E[∥ut∥2].

(10)
The convergence will be deduced by centering around this
inequality. For convenience, we define the following notations:

eti,τ ≜ dt
i,τ −∇fi(x

t
i,τ ), (11)

d
t

τ ≜
∑
i∈N

pid
t
i,τ , d̃t

τ ≜
∑
i∈St

wt
id

t
i,τ . (12)

Particularly, eti,τ embodies the error between local momentum
and corresponding gradient in τ -th step, i.e., we have a
dynamically changing error. Besides, d

t

τ and d̃t
τ indicate the

expected and weighted aggregated momentum, respectively,
signifying the momentum difference due to client selection.

Cross term. We first disassemble the cross term, namely
the second part in Eq. (10). All proofs are in Appendix B.

Lemma 1. According to Algorithm 1, we have:

E[⟨∇f(xt),−ut⟩] = E[⟨∇f(xt),−βut−1⟩]

+ E
[〈

∇f(xt),−1

I

I−1∑
τ=0

(1− µ)I−1−τ d̃t
τ

〉]
.

(13)

This lemma is derived by applying the global model aggre-
gation and server momentum update based on Eq. (4), which
is the cornerstone for convergence analysis. We continue to
handle the last part in Eq. (13).

Lemma 2. From momentum-based FedMoS, we attain:
I−1∑
τ=0

(1− µ)I−1−τE[⟨∇f(xt),−d̃t
τ ⟩]

≤
I−1∑
τ=0

(1− µ)I−1−τ
(
−1

2
E[∥∇f(xt)∥2]− 1

2
E[∥dt

τ∥2]

+
L2η2

∑
i∈N p2i

3µ

∑
i∈N

τ−1∑
k=0

E[∥dt
i,k∥2] +

∑
i∈N p2i
2

∑
i∈N

E[∥eti,τ∥2]
)
.

(14)

From Lemma 2, one can characterize Eq. (13) via analyzing
each constituent in Eq. (14), mainly the momentum and error.

Local momentum and error. Based on Lemmas 1 and 2,
we next discuss the local momentum E[∥dt

i,τ∥2] and error
E[∥eti,τ∥2] since they both are involved in Eq. (14). Please
refer to Appendix C for the proofs.

Lemma 3. According to Assumption 1, and assuming Lη
µ ≤

1

158
√

N
∑

i∈N p2
i

, µI ≤ 9
8 , µ ≤ 1

2 , the momentum dt
i,τ satisfies:

∑I−1

τ=0
E[∥dt

i,τ∥2] ≤
256

3µ
E[∥∇fi(x

t)∥2] + 16a2I2

B
σ2. (15)

As for the error E[∥eti,τ∥2], the following conclusion holds.

Lemma 4. Based on Assumption 2, the error eti,τ satisfies:∑I−1

τ=0
(1− µ)I−1−τE[∥eti,τ∥2]

≤ 2a2I

Bµ
σ2 +

2L2

µ

∑I−1

τ=0
E[∥xt

i,τ+1 − xt
i,τ∥2].

(16)

To obtain the bound of E[∥eti,τ∥2] in Lemma 4, it is critical
to cap the term E[∥xt

i,τ − xt
i,τ−1∥2] which is shown below.

Lemma 5. From Lemma 3, we obtain:
I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2] ≤
128η2I

µ E[∥∇fi(x
t)∥2] + 24a2I3η2

B σ2.

(17)

Lemmas 1-5 enable bounding the cross term in Eq. (10). The
remaining issue is to deal with global momentum E[∥ut∥2].

Global momentum. Momentum ut depends on both its pre-
vious buffer and current global synchronization as in Eq. (4).
Considering that Eq. (14) contains the expected momentum
d
t

τ , we should expand ut in terms of d
t

τ to merge this term.
Proofs are presented in Appendix D.

Lemma 6. From Assumption 2 and Lemma 3, we have:

E[∥ut∥2] ≤ 2β2E[∥ut−1∥2] + 2pmax

MI2

∑
i∈N

(256
3µ

E[∥∇fi(x
t)∥2]

+
16a2I2

B
σ2

)
+

4

3I

I−1∑
τ=0

E[∥dt

τ∥2].

(18)

Using Lemmas 1-6, we provide a close result to Theorem 1.

Lemma 7. Under the conditions in Theorem 1, we obtain:

E[f(xt+1)] ≤ E[f(xt)]− η

8µ
E[∥∇f(xt)∥2] + C

∑
i∈N

E[∥∇fi(x
t)∥2]

+ C ′σ2 +
(
2ηµβ2I2 +

4Lη2β2I2

3

)
E[∥ut−1∥2]− Lη2I2

6
E[∥ut∥2],

(19)
where C = (2569 + 144)

L2η3 ∑
i∈N p2

i

µ3 + 1024Lη2pmax

9µM

and C ′ =
ηa2IN

∑
i∈N p2

i

µB +
16L2η3a2I2N

∑
i∈N p2

i

3µ2B +
24L2η3a2I3N

∑
i∈N p2

i

µB + 64Lη2a2I2Npmax

3MB .

In the light of Lemma 7, we can apply a telescope sum
on both sides of Eq. (19) from 0 to T and combine Assump-
tions 3-4 to derive the convergence rate in Theorem 1. As for



Corollary 1, the convergence is obtained by further character-
izing the propagation of initial error E[∥dt

i,0 − ∇fi(x
t
i,0)∥2],

especially adjusting the error in Lemma 4 and its successor
results. This will additionally introduce terms 144µ

η C0σ
2 and

72µ
ηζ C0σ

2 corresponding to O
(
σ2

∑
i∈N

1
Bi,0

)
in Eq. (8) and

O
(
σ2

ζ

∑
i∈N

1
Bi,0

)
in Eq. (9), respectively, where C0 =

ηN
∑

i∈N
p2i

Bi,0

2µ +
16L2η3IN

∑
i∈N

p2i
Bi,0

3µ2 +
24L2η3I2N

∑
i∈N

p2i
Bi,0

µ +∑
i∈N

64Lη2Ipmax

3MBi,0
. Overall, we complete the proof outline.

IV. ADAPTIVE CLIENT SELECTION SCHEME

Double momentum can promote FL performance by miti-
gating the variance inherent in stochastic updates. But client
selection would incur sampling variance, nonetheless. In this
section, we elaborate the adaptive selection scheme of FedMoS
to cherry-pick best clients for sampling variance reduction.

A. Unbiased Client Selection

FedMoS in Algorithm 1 implies ut = βut−1 −
1
ηI

∑
i∈St wt

i(x
t
i,I − xt). Also, from Lemma 1, we have:

∑
i∈St

wt
i(x

t
i,I − xt) = η

I−1∑
τ=0

(1− µ)I−1−τ
∑
i∈St

wt
id

t
i,τ

= η

I−1∑
τ=0

(1− µ)I−1−τ
∑
i∈N

wt
id

t
i,τ ,

(20)

where the last equality is because wt
i = 0 based on Eq. (5)

when client i is not selected. Therefore, FedMoS, including the
client selection, is unbiased if the following condition holds:

E
[I−1∑
τ=0

(1− µ)I−1−τ
∑
i∈N

wt
id

t
i,τ

]
=

I−1∑
τ=0

(1− µ)I−1−τ
∑
i∈N

pi∇fi(x
t
i,τ ).

(21)
We first show that local momentum is an unbiased estima-

tion of the gradient value, where proof is in Appendix E.

Lemma 8. For any client i ∈ N , the local momentum satisfies
E∏τ

k=0 Bi,k
[dt

i,τ ] = ∇fi(x
t
i,τ ) based on Algorithm 1.

Lemma 8 implies that the unbiased FedMoS needs to ensure
unbiased sampling, i.e., ESt [wt

i ] = pi. Since wt
i is decided by

the client selection in Eq. (5) where wt
i =

1
M

∑M
m=1 I(lm = i)

with Pr(lm = i) = pi,m, we have ESt [wt
i ] =

1
M

∑M
m=1 pi,m.

As a result, the unbiased sampling indeed requires:

M∑
m=1

pi,m = Mpi,∀i ∈ N . (22)

In a nutshell, we will design an adaptive client selection to
reduce the sampling variance while also maintaining unbiased.

B. Selection Problem Formulation

Achieving unbiasedness and variance reduction is critical
to advocating FL performance [17]. Using Eq. (20), we
compute the variance of stochastic update in t-th round as

var ≜ E[∥
∑I−1

τ=0 η(1− µ)I−1−τ
∑

i∈N wt
id

t
i,τ −

∑I−1
τ=0 η(1−

µ)I−1−τ
∑

i∈N pi∇f(xt)∥2], which is further decomposed:

var = E
[∥∥∥I−1∑

τ=0

η(1− µ)I−1−τ
∑
i∈N

(wt
id

t
i,τ − pi∇fi(x

t
i,τ ))

∥∥∥2]︸ ︷︷ ︸
var1

+ E
[∥∥∥I−1∑

τ=0

η(1− µ)I−1−τ
∑
i∈N

pi(∇fi(x
t
i,τ )− f(xt))

∥∥∥2].
(23)

Eq. (23) holds because the cross term is 0 from Lemma 8.
Apparently, only the first part var1 is altered by client selection
while the rest relies on the model update of each client. Then,

var1 = η2
∑
i∈N

I−1∑
τ=0

(1− µ)2I−2−2τE[∥wt
id

t
i,τ − pi∇fi(x

t
i,τ )∥2]

= η2
∑
i∈N

I−1∑
τ=0

(1− µ)2I−2−2τE[∥wt
id

t
i,τ∥2 − ∥pi∇fi(x

t
i,τ )∥2],

(24)
in which the last equality is due to E[wt

id
t
i,τ ] = pi∇fi(x

t
i,τ )

since FedMoS is unbiased. An important observation is that
merely the first term of Eq. (24), involving E[∥wt

id
t
i,τ∥2] =∑

i∈N
∑I−1

τ=0(1−µ)2I−2−2τESt [(wt
i)

2]E[∥dt
i,τ∥2], depends on

the selection. Along with unbiased MD sampling in Eq. (22),
we express the aggregation weight ESt [(wt

i)
2] as:

ESt [(wt
i)

2] = ESt

[( 1

M

∑M

m=1
I(lm = i)

)2]
=

1

M2

(
Mpi +M2p2i −

∑M

m=1
p2i,m

)
.

(25)

Given the fact that pi is prior information and dt
i,τ is in-

fluenced by local model updates, we ought to maximize∑
i∈N

∑I−1
τ=0(1− µ)2I−2−2τE[∥dt

i,τ∥2]
∑M

m=1 p
2
i,m to reduce

the variance in line with Eqs. (23)-(25).
However, it is challenging to accomplish this goal since each

dt
i,τ is undisclosed at the time of client selection. To overcome

the problem, we divide the objective and seek to optimize∑I−1
τ=0(1−µ)2I−2−2τE[∥dt

i,τ∥2]
∑M

m=1 p
2
i,m for each individ-

ual client due to their independent local updates. By doing
this, it dispenses us with the burden of considering dt

i,τ , so
we can focus on maximizing

∑M
m=1 p

2
i,m instead. In general,

we determine the sampling probabilities {pi,m|i ∈ N}Mm=1 via
solving the client selection problem below:

max

M∑
m=1

p2i,m

s.t.

M∑
m=1

pi,m = Mpi,∀i ∈ N∑
i∈N

pi,m = 1,∀m = 1, · · · ,M.

(26)

The first constraint is simply the unbiased requirement, and the
second is raised by MD sampling where the total probability
in any selection should be 1. One can see that the selection
problem corresponding to each client is inter-dependent, which
calls for a holistic sampling scheme design.



Algorithm 2: Adaptive Client Selection
Input: Importance {pi}, selected client size M

1 Sort clients by descending order of importance {pi};
2 Initialize Pi = 0,∀i ∈ N ;
3 for m = 1, · · · ,M do
4 sum = 0, pi,m = 0,∀i ∈ N ;
5 for client i ∈ N do
6 if Pi < Mpi then
7 pi,m = min{Mpi − Pi, 1};
8 sum1 = sum, sum = sum1 + pi,m;
9 if sum ≤ 1 then

10 Pi = Pi + pi,m;

11 else
12 pi,m = 1− sum1, Pi = Pi + pi,m,

break;

13 Select a client based on MD sampling according to
probabilities {pi,m|i ∈ N};

C. Adaptive Selection Scheme Design

We have two observations for Eq. (26). First, the constraints
are not linearly independent as

∑
i∈N pi = 1. Second,

there are NM variables, which are far more than (N + M)
constraints, i.e., the solution space is very large. Therefore, we
propose an adaptive selection scheme to solve Eq. (26) by op-
timizing the sampling probability for each client successively.

1) Adaptive Client Selection: Recall that our goal is to
maximize

∑M
m=1 p

2
i,m under the unbiased and MD constraints.

Based on Cauchy–Schwarz inequality, we have:∑M

m=1
p2i,m ≥ 1

M

(∑M

m=1
pi,m

)2

= Mp2i , (27)

where = holds only when pi,m = pi,∀m, i.e., setting a
uniform probability as in MD sampling leads to the worst
performance. In principle, one should assign uneven probabil-
ities across M times of sampling to solve Eq. (26). Obeying
this rule, Algorithm 2 presents the adaptive client selection.

The philosophy behind Algorithm 2 is simple yet effective,
that is handling each client sequentially and then concentrating
his sampling probability on one or several consecutive times
in order to optimize

∑M
m=1 p

2
i,m (Lines 5-12). One distinct

difference of our selection from existing schemes [11], [13],
[14], [23] is that we require no prior client information, which
eliminates the costly server-client communications. More im-
portantly, this also avoids all clients from intensive gradient
computation. Note that clients will be sorted in a descending
order of their importance (Line 1). The sorting operation, with
computation complexity of O(N logN), enables sampling
higher-importance clients in the first several times to prevent
their total weights Mpi from being divided into multiple
fragmented parts. Next, we show that Algorithm 2 is unbiased,
and the proof is presented in Appendix F.

Theorem 2. Algorithm 2 outputs an unbiased client selection,
where the expectation of weight satisfies E[wt

i ] = pi,∀i ∈ N .

Remark: General FL algorithms are implemented atop of
uniform client sampling (UCS) [5], [6], which selects clients
uniformly at random with probability pi and sets weight as:

wt
i = I(i ∈ St)

N

M
pi. (28)

We explain why adaptive client selection (ACS) is superior to
UCS. Analogous to Eq. (25), the sampling variance of client
i is varACS

i = ESt [(wt
i)

2] − p2i = 1
M pi − 1

M2

∑M
m=1 p

2
i,m.

Roughly speaking, any client i will be selected with probabil-
ity 1 for about Mpi times when Mpi ≥ 1, or with probability
Mpi for one time. Then, Algorithm 2 yields varACS

i ≈ 0
if Mpi ≥ 1 or varACS

i = 1
M pi − p2i otherwise. Regarding

uniform sampling, the variance is varUCS
i = ESt [(wt

i)
2]−p2i =

N
M p2i − p2i based on Eq. (28). For Mpi ≥ 1, obviously
varUCS

i ≥ varACS
i holds, and for Mpi < 1, we still have

varUCS
i ≈ varACS

i since Npi ∼ 1. Therefore, the variance of
Algorithm 2 will be much smaller.

2) Clustered Adaptive Client Selection: Without collecting
any information of clients, like the gradient, Algorithm 2
reduces the variance by unevenly distributing sampling proba-
bilities over M selections, which releases them from expensive
communications and computations. To facilitate better client
representativity, we next characterize a variant of Algorithm 2,
i.e., clustered sampling [10], where a warm-up phase is
required to obtain the client “similarity”.

Generally, the similarity measures local data disparity,
which is used to pick congruent data in training representa-
tion, thereby leading to better FL convergence and accuracy.
For privacy preservation, clients only upload model parameters
rather than raw data. Therefore, we leverage Te extra commu-
nication rounds to acquire each gradient ∇fi(x

Te),∀i ∈ N
so as to quantify the similarity and bypass the privacy con-
cern [11], [14]. On the top of Algorithm 2, we elucidate the
main idea of the clustered adaptive scheme below.
• All clients and PS run Te-round FedMoS to learn ∇fi(x

Te);
• Calculate similarity between clients based on cosine dis-

tance, i.e., si,j =
⟨∇fi(x

Te ),∇fj(x
Te )⟩

∥∇fi(xTe )∥∥∇fj(xTe )∥ .
• Cluster clients into disjoint sets C = {c1, c2, · · · , cK} using
si,j , with “close” ones being placed into the same set;

• Sort sets by descending order of total importance
∑

i∈ck
pi;

• Execute the same process as Algorithm 2 to calculate the
sampling probability and select clients accordingly.
Consistent with Theorem 2, the clustered adaptive selection

is also unbiased. Overall, our adaptive selection schemes solve
Eq. (26) with a low computation complexity, since we will
assign client sampling probability to an extreme value, mostly
0 or 1, in a sequential manner for maximizing the objective.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of FedMoS, in-
cluding momentum-based update and client selection scheme.

A. Evaluation Setup

1) Platform and Parameters: Evaluations are conducted on
a Dell server with NVIDIA Tesla V100 GPUs using Pytorch.



(a) Training loss over # round, I = 5 (b) Test accuracy over # round, I = 5 (c) Training loss over # round, I = 10 (d) Test accuracy over # round, I = 10

Fig. 2: Comparison results of FL algorithms on MNIST.

(a) Training loss over # round, I = 5 (b) Test accuracy over # round, I = 5 (c) Training loss over # round, I = 10 (d) Test accuracy over # round, I = 10

Fig. 3: Comparison results of FL algorithms on CIFAR-10.

(a) Training loss over # round, I = 5 (b) Test accuracy over # round, I = 5 (c) Training loss over # round, I = 10 (d) Test accuracy over # round, I = 10

Fig. 4: Comparison results of selection schemes for FedMoS on MNIST.

Specifically, we simulate N = 500 clients and a central PS,
where out of 5% clients are selected in each round, i.e., M =
25. The sampled batch size is B = 10 and total communication
round is T = 500 with extra rounds being Te = 4. Also
consider different settings of local steps, namely I = 5 and
I = 10, to show the robustness of FedMoS.

2) Datasets and Models: We attain the results on two real-
world datasets: MNIST [24] and CIFAR-10 [25]. In particular,
MNIST contains 70000 handwritten images with each being
a square 28 × 28 = 784 pixel gray-scale digit. CIFAR-10
consists of 60000 tiny (32×32 = 1024 pixel) color images in
10 classes. Considering skewed non-i.i.d. data, we randomly
subsample Di ∈ [10, 50] (Di ∈ [20, 200]) training data from
2 (5) image classes on MNIST (CIFAR-10) for each client.
Besides, we implement a convolutional neural network model
followed by two fully connected layers for MNIST, and three
fully connected layers for CIFAR-10.

3) Benchmark: To validate the proposed FedMoS, we in-
troduce the following FL algorithms for comparison.
• FedAvg: federated averaging [5], which selects M out of N

clients uniformly at random. Each selected client performs
I-step SGD before being periodically synchronized by PS.

• FedProx: federated averaging with proximal term µ(xt
i,τ −

xt) in local update of uniformly sampled clients [6]. Fed-
Prox is developed to handle the data heterogeneity.

• STEM: stochastic two-sided momentum [19], which origi-
nally assumes a full client participation with uniform impor-

tance. To incorporate client sampling, we will first randomly
select M clients and then follow STEM to train the model.

B. Performance of FedMoS

1) Comparison Results of FL Algorithms: First, we show
that FedMoS with double momentum alone has superior per-
formance over benchmarks. To this end, suppose all algorithms
are based on uniform client selection (UCS) in Eq. (28).

Training loss and test accuracy on MNIST are depicted in
Fig. 2. Basically, the loss of FedMoS decreases much faster
than FedAvg, FedProx and STEM, i.e., FedMoS will converge
to the stationary point more quickly. In the meantime, FedMoS
can reach about 98% accuracy under I = 5 or I = 10,
which is also the highest score achieved on MNIST. Similar
observations are witnessed on CIFAR-10 in Fig. 3. Concretely,
FedMoS yields an obviously sharper decline in global loss
compared to FedAvg, FedProx and STEM. Furthermore, we
make an approximately 71.42% test accuracy using FedMoS
on CIFAR-10, which surpasses the baselines by large margins,
roughly 4%-9% higher under different local step settings.

2) Necessity of adaptive selection for FedMoS: We com-
plete the picture by involving the sampling schemes, i.e.,
adaptive client selection (ACS) in Algorithm 2 and its variant,
clustered adaptive client selection (CACS). As a comparison,
we also exhibit the results of FedMoS with UCS.

Specifically, the performances regarding training loss and
test accuracy on MNIST and CIFAR-10 are displayed in



TABLE I: Communication rounds for achieving target performance.

Dataset Target FedMoS (ACS) FedMoS (CACS) FedMoS (UCS) FedAvg (UCS) FedProx (UCS) STEM (UCS)

MNIST 0.4 loss 62 54 80 (1.5×) 286 (3.6×, 5.3×) 287 (3.6×, 5.3×) 244 (3.1×, 4.5×)
95% acc. 62 51 90 (1.8×) 380 (4.2×, 7.5×) 351 (3.9×, 6.9×) 255 (2.8×, 5.0×)

CIFAR-10 1.2 loss 76 73 84 (1.2×) 251 (3.0×, 3.4×) 256 (3.0×, 3.5×) 176 (2.1×, 2.4×)
60% acc. 76 71 88 (1.2×) 230 (2.6×, 3.2×) 236 (2.7×, 3.3×) 202 (2.3×, 2.8×)

(a) Training loss over # round, I = 5 (b) Test accuracy over # round, I = 5 (c) Training loss over # round, I = 10 (d) Test accuracy over # round, I = 10

Fig. 5: Comparison results of selection schemes for FedMoS on CIFAR-10.

Figs. 4 and 5, respectively. In general, ACS and CACS have
faster convergence rate pertaining to loss declines than UCS
on both MNIST and CIFAR-10. As for the test accuracy,
ACS and CACS achieve similar performance, approximately
98.61% on MNIST and 72.97% on CIFAR-10 under both local
steps I = 5 and I = 10, which are higher than those of UCS.

C. Communications Required for Target Loss and Accuracy

We illustrate the communication rounds required for reach-
ing the target performance, i.e., 0.4 (1.2) training loss and
95% (60%) test accuracy on MINIST (CIFAR-10). W.l.o.g.,
we mainly demonstrate the case where I = 5.

Results in Table I include benchmark FL algorithms (Fe-
dAvg, FedProx, STEM) with UCS, and FedMoS with UCS,
ACS and CACS. Particularly, we can see that FedMoS with
UCS only (light numbers in brackets) mitigates the commu-
nications by 67%-72% (52%-67%) pertaining to the target
loss, and by 65%-76% (56%-63%) regarding the target ac-
curacy on MINIST (CIFAR-10). By involving adaptive client
sampling (bold numbers in brackets), ACS/CACS expedites
the convergence rate by 20%-80% than UCS for FedMoS,
which is also a great improvement and seems counterintuitive
to the relatively small distinctions in Figs. 4-5. Moreover,
FedMoS with ACS/CACS is approximately 6 (3) times faster
than baselines on MNIST (CIFAR-10) in terms of the target
loss or accuracy. Therefore, FedMoS is highly efficient with
a remarkable reduction in communication overheads.

VI. RELATED WORK

Momentum-based FL algorithms. Recently, FL has at-
tracted a surge of attention where one of its distinct features is
skewed non-i.i.d. data. Momentum is a promising technique to
reduce the variance incurred by data heterogeneity [26]. MIME
maintains the momentum on the client side as a combination of
local variable and server state, so that client update can mimic
a centralized training process [27]. In contrast, different forms
of momentum on the server side are employed in [28] to
increase the framework adaptivity. Incorporating the benefits
of local and global momentum, Khanduri et al. propose STEM
to minimize the training time and communication cost [19].
Nonetheless, existing double momentum-based FL algorithms

are mainly built on uniform aggregation weight or full client
participant, which are not general in practical scenarios.

Client selection. Perpendicular to momentum-based update,
client selection is also widely adopted to reduce training time.
Nishio et al. propose FedCS to pick clients according to their
resource conditions, which needs many extra server-client in-
teractions for exchanging client information [29]. Importance
samplings with and without replacement are explored in [30],
where both data and model variability would influence the con-
vergence rate. Considering the existence of selection bias, Cho
et al. design power-of-two strategies to achieve communication
and computation efficient samplings [31]. Furthermore, Li et
al. develop a sample-level selection to choose participants with
high-quality data so as to improve learning performance [32].
However, existing sampling schemes are mostly based on basic
FL algorithms, like FedAvg, while how to jointly design client
selection and momentum buffer still remains open.

Communication-efficient methods. Communication effi-
ciency can be empirically enhanced by precluding irrelevant
updates in FL, since parameters often stabilize before the
ultimate model convergence, i.e., reducing unnecessary syn-
chronizations is effective to mitigate communication over-
heads [33], [34]. Besides, excluding stragglers with low system
efficiency is also leveraged to promote the wall-time perfor-
mance [35]. Though principled, they mainly have empirical
improvements while lacking of theoretical guarantees.

VII. CONCLUSION

In this paper, we propose FedMoS, a joint communication-
efficient framework of momentum-based update and adaptive
client selection, to tame the client drift issue. We first maintain
double momentum on both server and client sides to deal
with the data heterogeneity. Through a rigid analysis, we
characterize a tight O(T−2/3) convergence rate for FedMoS
as long as client sampling is unbiased. Then, we design an
adaptive client selection to optimally distribute the sampling
probabilities. We show that the adaptive scheme can reduce
the sampling variance while also maintaining unbiased model
aggregation. Extensive evaluations conducted on real-world
datasets corroborate the superiority of FedMoS over existing
benchmarks in advocating FL convergence and accuracy.
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APPENDIX

A. Proof for Main Results

1) Proof of Theorem 1: From Lemma 7, If we sum both
sides from t = 0 to t = T − 1, we have

E[f(xT ) ≤ f(x0)−
T−1∑
t=0

η

8µ
E[∥∇f(xt)∥2]

+ C
∑
i∈N

T−1∑
t=0

E[∥∇fi(x
t)∥2] + TC ′σ2

+
T−1∑
t=0

(
2ηµβ2I2 + 4Lη2β2I2

3

)
E[∥ut−1∥2]−

T−1∑
t=0

Lη2I2

6 E[∥ut∥2]

≤ f(x0)−
T−1∑
t=0

η

8µ
E[∥∇f(xt)∥2]

+ C
∑
i∈N

T−1∑
t=0

E[∥∇fi(x
t)∥2] + TC ′σ2

+
T−1∑
t=0

(
2ηµβ2I2 + 4Lη2β2I2

3

)
E[∥ut∥2]−

T−1∑
t=0

Lη2I2

6 E[∥ut∥2].
(29)

Since β ≤ min{
√

Lη
24µ ,

1
4}, and then Lη2I2

6 ≥ 2ηµβ2I2 +

4Lη2β2I2

3 .
Regarding E[∥∇fi(x

t)∥2], using Assumption 3, we attain

E[∥∇fi(x
t)∥2] ≤ 2E[∥∇f(xt)∥2] + 2E[∥∇fi(x

t)−∇f(xt)∥2]
≤ 2E[∥∇f(xt)∥2] + 2ς2.

(30)



Therefore

E[f(xT )] ≤ f(x0)−
T−1∑
t=0

( η

8µ
− 2NC

)
E[∥∇f(xt)∥2]

+ TC ′σ2 + 2NTCς2.

(31)

Let Lη
µ ≤ 1

158
√

N
∑

i∈N p2
i

, Lη ≤ M
2048Npmax

, then η
8µ −

2NC ≥ ( 18 − 1
144 − 1

9 )
η
µ = η

144µ . Rearranging the terms in
Eq. (31), we have

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ 144µ

Tη
(f(x0)− E[f(xT )])

+
144µ

η
C ′σ2 +

288µ

η
NCς2

≤ 144µ

Tη
(f(x0)− f∗)

+
144µ

η
C ′σ2 +

288µ

η
NCς2.

Considering that µI ∈ [1, 9
8 ], and also combining with the

expressions of C,C ′, if we denote η = O(T−2/3), µ =
O(T−1/3) and a = O(T−1/2), then we can get
1
T

∑T−1
t=0 E[∥∇f(xt)∥2] ≤ O

( f(x0)−f∗

T 2/3

)
+ O

(
σ2

T 2/3

)
+

O
(

ς2

T 2/3

)
. The first part is proved.

We next discuss the second case where loss function satisfies
PL condition, i.e., E[∥∇f(xt)∥2] ≥ 2ζ(E[f(xt)]− f∗).

1

T

T−1∑
t=0

2ζ(E[f(xt)]− f∗) ≤ 144µ

Tη
(f(x0)− f∗)

+
144µ

η
C ′σ2 +

288µ

η
NCς2.

(32)
As a result, there holds 1

T

∑T−1
t=0 (E[f(xt)] − f∗) ≤

72µ
Tηζ (f(x

0) − f∗) + 72µ
ηζ C ′σ2 + 144µ

ηζ NCς2, i.e., the average

error converges to 0 with O
( f(x0)−E[f(xT )]

T 2/3ζ

)
+ O

(
σ2

T 2/3ζ

)
+

O
(

ς2

T 2/3ζ

)
if setting the parameters as stated in the theorem.

In summary, we complete the proof.
2) Proof of Corollary 1: Similar to Lemma 4, if considering

initial batch size of Bi,0 the error E[∥eti,τ∥2] is:
I−1∑
τ=0

(1− µ)I−1−τE[∥eti,τ∥2]

≤ 1

µB0
σ2 +

2a2I

µB
σ2 +

2L2

µ

I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2].

(33)

Akin to the proof of Lemma 3, the momentum satisfies
I−1∑
τ=0

E[∥dt
i,τ∥2] ≤

256

3µ
E[∥∇fi(x

t)∥2] + 16a2I2

B
σ2 +

16I

Bi,0
σ2.

(34)
Besides, E[∥xt

i,τ+1 − xt
i,τ∥2] in Lemma 5 becomes

I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2] ≤
128η2I

µ
E[∥∇fi(x

t)∥2]

+
24a2η2I3

B
σ2 +

24η2I2

Bi,0
σ2.

(35)

Also the server momentum changes accordingly, which is

E[∥ut∥2] ≤ 2β2E[∥ut−1∥2] + 4

3I

I−1∑
τ=0

E[∥dt

τ∥2]

+
2pmax

MI2

∑
i∈N

(256
3µ

E[∥∇fi(x
t)∥2] + 16a2I2

B
σ2 +

16I

Bi,0
σ2

)
.

(36)
Denote Y ≜ E[⟨∇f(xt),−η

∑I−1
τ=0(1−µ)I−1−τ d̃t

τ ⟩]. Follow-
ing Eq. (66) and using Eqs. (33)-(36), we obtain

Y ≤ − η

4µ
E[∥∇f(xt)∥2]− η

8

I−1∑
τ=0

E[∥dt

τ∥2]

+
(256

9
+ 144

)L2η3
∑

i∈N p2i
µ3

∑
i∈N

E[∥∇fi(x
t)∥2]

+
(ηa2IN ∑

i∈N p2i
µB

+
16L2η3a2I2N

∑
i∈N p2i

3µ2B

)
σ2

+
24L2η3a2I3N

∑
i∈N p2i

µB
σ2

+
(ηN ∑

i∈N
p2
i

Bi,0

2µ
+

16L2η3EN
∑

i∈N
p2
i

Bi,0

3µ2

)
σ2

+
24L2η3I2N

∑
i∈N

p2
i

Bi,0

µ
σ2

(37)
For terms involving server momentum E[∥ut∥2], we have

2Lη2I2

3
E[∥ut∥2] ≤ 4Lη2β2I2

3
E[∥ut−1∥2]

+
Lη2pmax

M

∑
i∈N

(1024
9µ

E[∥∇fi(x
t)∥2] + 64a2I2

3B
σ2 +

64I

3Bi,0
σ2

)
+

8Lη2I

9

∑I−1

τ=0
E[∥dt

τ∥2].
(38)

Let C = ( 2569 + 144)
L2η3 ∑

i∈N p2
i

µ3 + 1024Lη2pmax

9µM

and C ′ =
ηa2IN

∑
i∈N p2

i

µB +
16L2η3a2I2N

∑
i∈N p2

i

3µ2B +
24L2η3a2I3N

∑
i∈N p2

i

µB + 64Lη2a2I2Npmax

3MB , and further use C0 =

ηN
∑

i∈N
p2i

Bi,0

2µ +
16L2η3IN

∑
i∈N

p2i
Bi,0

3µ2 +
24L2η3I2N

∑
i∈N

p2i
Bi,0

µ +∑
i∈N

64Lη2Ipmax

3MBi,0
. We attain

E[f(xt+1)] ≤ E[f(xt)]− η

8µ
E[∥∇f(xt)∥2]

+ C
∑

i∈N
E[∥∇fi(x

t)∥2] + C ′σ2 + C0σ
2

+
(
2ηµβ2I2 +

4Lη2β2I2

3

)
E[∥ut−1∥2]− Lη2I2

6
E[∥ut∥2].

Intuitively, we can derive the final results when applying the
same approach in Theorem 1.

B. Proofs for Cross Term
1) Proof of Lemma 1: This lemma is obtained by expanding

the global momentum ut. Based on FedMoS, we attain:

E[⟨∇f(xt),−ut⟩]

= E
[〈

∇f(xt),−βut−1 +
1

ηI

∑
i∈St

wt
i(x

t
i,I − xt)

〉]
. (39)



Besides, for the term 1
ηI

∑
i∈St wt

i(x
t
i,I − xt), we have:

1

ηI

∑
i∈St

wt
i(x

t
i,I − xt)

=
1

ηI

∑
i∈St

wt
i [x

t
I−1−1 − xt − ηdt

I−1−1 − µ(xt
I−1−1 − xt)]

=
1

ηI

∑
i∈St

wt
i [(1− µ)(xt

I−1−1 − xt)− ηdt
I−1−1]

a
= −1

I

∑
i∈St

wt
i

I−1∑
τ=0

(1− µ)I−1−τdt
i,τ

= −1

I

I−1∑
τ=0

wt
i

∑
i∈St

(1− µ)I−1−τdt
i,τ

= −1

I

I−1∑
τ=0

(1− µ)I−1−τ d̃t
τ ,

(40)
where a

= holds by recursively using client-side model updating
and the fact that xt

i,0 = xt, while the last = is from Eq. (12).
Substituting Eq. (40) into Eq. (39) can yield the result.

2) Proof of Lemma 2: For any vectors a and b, we have
⟨a, b⟩ = 1

2∥a∥
2 + 1

2∥b∥
2 − 1

2∥a− b∥2. As a result:

E[⟨∇f(xt),−d̃t
τ ⟩] = −1

2
E[∥∇f(xt)∥2]− 1

2
E[∥d̃t

τ∥2]

+
1

2
E[∥∇f(xt)− d̃t

τ∥2].
(41)

For the last term 1
2E[∥∇f(xt)− d̃t

τ∥2], we have

1

2
E[∥∇f(xt)− d̃t

τ∥2] =
1

2
E[∥∇f(xt)− d

t

τ + d
t

τ − d̃t
τ∥2]

=
1

2
E[∥∇f(xt)− d

t

τ∥2] +
1

2
E[∥dt

τ − d̃t
τ∥2]

=
1

2
E
[∥∥∥∑

i∈N
pi(∇fi(x

t)−∇fi(x
t
i,τ ) +∇fi(x

t
i,τ )− dt

i,τ )
∥∥∥2]

+
1

2
E[∥d̃t

τ∥2]−
1

2
E[∥dt

τ∥2]

=
1

2
E
[∥∥∥∑

i∈N
pi(∇fi(x

t)−∇fi(x
t
i,τ ))

∥∥∥2]
+

1

2
E
[∥∥∥∑

i∈N
pie

t
i,τ

∥∥∥2]+ 1

2
E[∥d̃t

τ∥2]−
1

2
E[∥dt

τ∥2]

≤
∑

i∈N p2i
2

∑
i∈N

E[∥∇fi(x
t)−∇fi(x

t
i,τ )∥2]

+

∑
i∈N p2i
2

∑
i∈N

E[∥eti,τ∥2] +
1

2
E[∥d̃t

τ∥2]−
1

2
E[∥dt

τ∥2]

≤
∑

i∈N p2i
2

L2
∑
i∈N

E[∥xt − xt
i,τ∥2]

+

∑
i∈N p2i
2

∑
i∈N

E[∥eti,τ∥2] +
1

2
E[∥d̃t

τ∥2]−
1

2
E[∥dt

τ∥2],

(42)
where the second and third = are because ESt [d̃t

τ ] = d
t

τ due
to unbiased client selection and E[dt

i,τ ] = ∇fi(x
t
i,τ ) shown in

Lemma 8 later. The first ≤ is from Cauchy–Schwarz inequal-
ity, and the second ≤ uses smoothness in Assumption 1.

Similarly, we express the term
∑

i∈N E[∥xt −xt
i,τ∥2] with

regard to the momentum. From FedMoS, we have∑
i∈N

E[∥xt − xt
i,τ∥2]

=
∑
i∈N

E[∥(1− µ)(xt
i,τ−1 − xt)− ηdi,τ−1∥2]

=
∑
i∈N

E
[∥∥∥τ−1∑

k=0

−(1− µ)τ−1−kηdt
i,k

∥∥∥2]
≤ η2

1− (1− µ)2τ

2µ− µ2

∑
i∈N

τ−1∑
k=0

E[∥dt
i,k∥2]

≤ 2η2

3µ

∑
i∈N

τ−1∑
k=0

E[∥dt
i,k∥2],

(43)

where the second = holds by iteratively applying local model
updating, the first ≤ uses Cauchy–Schwarz inequality, and the
last ≤ is due to 2µ − µ2 ≥ 3

2µ as µ ≤ 1
2 . By substituting

Eqs. (42)-(43) into Eq. (41), we complete the proof.

C. Proofs for Local Momentum and Error

1) Proof of Lemma 3: To start with, we need to link dt
i,τ

and ∇fi(x
t), where the former is updated based on stochastic

gradient. For this purpose, we consider yt
i,τ+1 = xt

i,τ −
η∇fi(x

t
i,τ )−µ(xt

i,τ −xt), and also define ∆yt
i,τ ≜ yt

i,τ −xt.
Note that yt

i,τ+1 evolves in line with the gradient ∇fi(x
t
i,τ )

not its stochastic variant ∇̃Bi,τ fi(x
t
i,τ ). Recall that xt

i,τ+1 =
xt
i,τ − ηdt

i,τ − µ(xt
i,τ − xt) which involves the stochastic

momentum dt
i,τ . Similarly denote ∆xt

i,τ ≜ xt
i,τ −xt, thereby

∆yt
i,τ+1 = (1 − µ)∆xt

i,τ − η∇fi(x
t
i,τ ) and ∆xt

i,τ+1 =
(1− µ)∆xt

i,τ − ηdt
i,τ . Then,

E[∥∆yt
i,τ+1 − (1− µ)∆xt

i,τ + η∇fi(x
t
i,τ )∥2]

≤ E[∥(1− µ)∆xt
i,τ − (1− µ)∆xt

i,τ + η∇fi(x
t
i,τ )∥2]

− E[∥η∇fi(x
t
i,τ )∥2].

(44)

This leads to:
E[∥∆yt

i,τ+1 − (1− µ)∆xt
i,τ∥2]

+ 2E[⟨η∇fi(x
t
i,τ ),∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

≤ −η2E[∥∇fi(x
t
i,τ )∥2].

(45)

Analogously, for ∆xt
i,τ , we attain that:

E[∥∆xt
i,τ+1 − (1− µ)∆xt

i,τ + ηdt
i,τ∥2]

≤ E[∥∆yt
i,τ+1 − (1− µ)∆xt

i,τ + ηdt
i,τ∥2]

− E[∥η∇fi(x
t
i,τ )− ηdt

i,τ∥2].
(46)

It immediately results in the following outcome:

E[∥∆xt
i,τ+1 − (1− µ)∆xt

i,τ∥2]
+ 2E[⟨ηdt

i,τ ,∆xt
i,τ+1 − (1− µ)∆xt

i,τ ⟩]
≤ E[∥∆yt

i,τ+1 − (1− µ)∆xt
i,τ∥2]

+ 2E[⟨ηdt
i,τ ,∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]− η2E[∥eti,τ∥2].

(47)



Combining Eq. (45) and Eq. (47), we have:

E[∥∆xt
i,τ+1 − (1− µ)∆xt

i,τ∥2]
≤ 2E[⟨ηdt

i,τ ,∆yt
i,τ+1 − (1− µ)∆xt

i,τ ⟩]
− 2E[⟨η∇fi(x

t
i,τ ),∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− 2E[⟨ηdt
i,τ ,∆xt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− η2E[∥∇fi(x
t
i,τ )∥2]− η2E[∥eti,τ∥2].

(48)

If we expand the left-hand side as E[∥∆xt
i,τ+1 − (1 −

µ)∆xt
i,τ∥2] = E[∥∆xt

i,τ+1 − ∆xt
i,τ∥2] + 2E[⟨∆xt

i,τ+1 −
∆xt

i,τ , µ∆xt
i,τ ⟩] + µ2E[∥xt

i,τ∥2], there holds:

E[∥∆xt
i,τ+1 −∆xt

i,τ∥2]
≤ −2E[⟨∆xt

i,τ+1 −∆xt
i,τ , µ∆xt

i,τ ⟩]− µ2E[∥xt
i,τ∥2]

+ 2E[⟨ηdt
i,τ ,∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− 2E[⟨η∇fi(x
t
i,τ ),∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− 2E[⟨ηdt
i,τ ,∆xt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]− η2E[∥∇fi(x

t
i,τ )∥2]

− η2E[∥eti,τ∥2].
(49)

Considering that each fi(x
t
i,τ ) is L-smooth and the fact that

xt
i,τ+1 −xt

i,τ = ∆xt
i,τ+1 −∆xt

i,τ , we attain the result below

E[fi(xt
i,τ+1)] ≤ E[fi(xt

i,τ )]

+ E[⟨∇fi(x
t
i,τ ),∆xt

i,τ+1 −∆xt
i,τ ⟩] +

L

2
E[∥xt

i,τ+1 − xt
i,τ∥2]

= E[fi(xt
i,τ )]−

( 1

2η
− L

2

)
E[∥xt

i,τ+1 − xt
i,τ∥2]

+ E[⟨∇fi(x
t
i,τ ),∆xt

i,τ+1 −∆xt
i,τ ⟩] +

1

2η
E[∥xt

i,τ+1 − xt
i,τ∥2]

a
≤ E[fi(xt

i,τ )]−
( 1

2η
− L

2

)
E[∥xt

i,τ+1 − xt
i,τ∥2]

+ E[⟨∇fi(x
t
i,τ ),∆xt

i,τ+1 −∆xt
i,τ ⟩]

+ E[⟨dt
i,τ ,∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− E[⟨∇fi(x
t
i,τ ),∆yt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− E[⟨dt
i,τ ,∆xt

i,τ+1 − (1− µ)∆xt
i,τ ⟩]

− η

2
E[∥∇fi(x

t
i,τ )∥2]−

η

2
E[∥eti,τ∥2]

− 1

η
E[⟨∆xt

i,τ+1 −∆xt
i,τ , µ∆xt

i,τ ⟩]−
µ2

2η
E[∥∆xt

i,τ∥2]

= E[fi(xt
i,τ )]−

( 1

2η
− L

2

)
E[∥xt

i,τ+1 − xt
i,τ∥2]

+ E[⟨∇fi(x
t
i,τ )− dt

i,τ ,∆xt
i,τ+1 −∆yt

i,τ+1⟩]

− E[⟨∇fi(x
t
i,τ ), µ∆xt

i,τ ⟩]−
1

η
E[⟨∆xt

i,τ+1 −∆xt
i,τ , µ∆xt

i,τ ⟩]

− µ2

2η
E[∥∆xt

i,τ∥2]−
η

2
E[∥∇fi(x

t
i,τ )∥2]−

η

2
E[∥eti,τ∥2]

b
= E[fi(xt

i,τ )]−
( 1

2η
− L

2

)
E[∥xt

i,τ+1 − xt
i,τ∥2] + ηE[∥eti,τ∥2]

+
µ2

2η
E[∥∆xt

i,τ∥2]−
η

2
E[∥dt

i,τ∥2],
(50)

where
a
≤ is obtained by substituting Eq. (49), and b

= is
because ∆xt

i,τ+1 − ∆xt
i,τ = −ηdt

i,τ − µ∆xt
i,τ , ∆xt

i,τ+1 −

∆yt
i,τ+1 = −ηdt

i,τ + η∇fi(x
t
i,τ ) and E[dt

i,τ ] = ∇fi(x
t
i,τ ).

Similar to the later proof of Lemma 4, we can obtain that∑I−1
τ=0 E[∥eti,τ∥2] ≤

a2I2

B σ2+2IL2
∑I−1

τ=0 E[∥xt
i,τ+1−xt

i,τ∥2].
Furthermore, telescoping both sides of Eq. (50), we have

E[fi(xt
i,I)]− E[fi(xt)]

≤ −( 1
2η − L

2 )
∑I−1

τ=0 E[∥xt
i,τ+1 − xt

i,τ∥2] + η
∑I−1

τ=0 E[∥eti,τ∥2]

+
µ2

2η

I−1∑
τ=0

E[∥∆xt
i,τ∥2]−

η

2

I−1∑
τ=0

E[∥dt
i,τ∥2]

≤ −
[ 1

2η
− L

2
− 2ηIL2

] I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2]

+
µ2

2η

I−1∑
τ=0

E[∥∆xt
i,τ∥2]−

η

2

I−1∑
τ=0

E[∥dt
i,τ∥2] +

a2I2

B
ησ2

c
≤ µ2

2η

I−1∑
τ=0

E[∥∆xt
i,τ∥2]−

η

2

I−1∑
τ=0

E[∥dt
i,τ∥2] +

a2I2

B
ησ2

d
≤ −

(η
2
− ηµI

4− 2µ

) I−1∑
τ=0

E[∥dt
i,τ∥2] +

a2I2

B
ησ2.

(51)

In particular,
c
≤ is because 1

2η ≥ L
2 + 2EL2η when ηL

µ ≤
1
75 , µ ≤ 1

2 , µI ≤ 9
8 , and

d
≤ is due to ∆xt

i,τ = (1−µ)∆xt
i,τ−1−

ηdt
i,τ−1 =

∑τ−1
k=0 −(1−µ)τ−1−kηdt

i,k. With this in mind, we

have
∑I−1

τ=0 E[∥∆xt
i,τ∥2] ≤ η2

I−1∑
τ=0

1
2µ−µ2

τ−1∑
k=0

E[∥dt
i,k∥2] ≤

η2I
2µ−µ2

∑I−1
τ=0 E[∥dt

i,k∥2]. In this way, we know

I−1∑
τ=0

E[∥dt
i,τ∥2] ≤ 2

η− ηµI
2−µ

(E[fi(xt)]− E[fi(xt
i,I)]) +

2a2I2

B(1− µI
2−µ )

σ2.

(52)

Comparing Eq. (52) with the final result, we need to deal
E[fi(xt)]− E[fi(xt

i,I)]. From L-smoothness, then

E[fi(xt)]− E[fi(xt
i,I)]

≤ E[⟨∇fi(x
t),xt − xt

i,I⟩] +
L

2
E[∥xt

i,I − xt∥2]

≤ 16η
3µ E[∥∇fi(x

t)∥2] + 3µ
64ηE[∥x

t
i,I − xt∥2] + L

2E[∥x
t
i,I − xt∥2]

= 16η
3µ E[∥∇fi(x

t)∥2] + ( 3µ
64η + L

2 )E[∥
∑I−1

τ=0(1− µ)I−1−τηdt
i,τ∥2]

≤ 16η

3µ
E[∥∇fi(x

t)∥2] +
( 3µ

64η
+

L

2

) η2

2µ− µ2

∑I−1

τ=0
E[∥dt

i,τ∥2]

≤ 16η

3µ
E[∥∇fi(x

t)∥2] + η

16

∑I−1

τ=0
E[∥dt

i,τ∥2].
(53)

Here, the third ≤ is based on Cauchy–Schwarz inequality. As
for the last ≤, we have 1

2−µ ≤ 2
3 when µ ≤ 1

2 and Lη
µ ≤ 1

75 .



Substituting Eq. (53) into Eq. (52), we attain

I−1∑
τ=0

E[∥dt
i,τ∥2] ≤

32

3µ

1

1− µI
2−µ

E[∥∇fi(x
t)∥2]

+
1

8− 8µI
2−µ

I−1∑
τ=0

E[∥dt
i,τ∥2] +

2a2I2

B(1− µI
2−µ )

σ2

≤ 128
3µ E[∥∇fi(x

t)∥2] + 1
2

∑I−1
τ=0 E[∥dt

i,τ∥2] + 2a2I2

B(1− µI
2−µ )

σ2

≤ 128

3µ
E[∥∇fi(x

t)∥2] + 1

2

I−1∑
τ=0

E[∥dt
i,τ∥2] +

8a2I2

B
σ2,

(54)
where the last two inequalities are obtained since µI ≤ 9

8 and
1

2−µ ≤ 2
3 . Rearranging the terms yields the final result.

2) Proof of Lemma 4: Prior to the main proof, we need to
first introduce a lemma to aid our illustration.

Lemma 9. E[∥∇̃Bi,τ
fi(x

t
i,τ )−∇fi(x

t
i,τ )∥2] ≤ σ2

B .

Proof. Using the definition of ∇̃Bi,τ
fi(x

t
i,τ ), there holds

E[∥∇̃Bi,τ fi(x
t
i,τ )−∇fi(x

t
i,τ )∥2]

= E
[∥∥∥ 1

B

∑
ξi∈Bi,τ

∇fi(x
t
i,τ , ξi)−∇fi(x

t
i,τ )

∥∥∥2]
=

1

B2
E
[∥∥∥ ∑

ξi∈Bi,τ

(∇fi(x
t
i,τ , ξi)−∇fi(x

t
i,τ ))

∥∥∥2]
a
=

1

B2

∑
ξi∈Bi,τ

E[∥∇fi(x
t
i,τ , ξi)−∇fi(x

t
i,τ )∥2]

≤ σ2

B
.

(55)

Note that a
= is because the the cross term is 0 as

E[∇fi(x
t
i,τ , ξi)] = ∇fi(x

t
i,τ ).

Now, we present the proof of Lemma 4. For ease of
exposition, we denote at

i,τ = (1 − a)[(∇̃Bi,τ
fi(x

t
i,τ )) −

∇fi(x
t
i,τ ) − (∇̃Bi,τ fi(x

t
i,τ−1) − ∇fi(x

t
i,τ−1))] and bti,τ =

a(∇̃Bi,τ
fi(x

t
i,τ )−∇fi(x

t
i,τ )). In line with FedMoS, it satisfies

I−1∑
τ=0

(1− µ)I−1−τE[∥eti,τ∥2]

=

I−1∑
τ=0

(1− µ)I−1−τE[∥dt
i,τ −∇fi(x

t
i,τ )∥2]

=

I−1∑
τ=0

(1− µ)I−1−τE[∥∇̃Bi,τ
fi(x

t
i,τ )

+ (1− a)(dt
i,τ−1 − ∇̃Bi,τ

fi(x
t
i,τ−1))−∇fi(x

t
i,τ )∥2]

=

I−1∑
τ=0

(1− µ)I−1−τE[∥(1− a)(dt
i,τ−1 −∇fi(x

t
i,τ−1))

+ at
i,τ + bti,τ∥2]

a
=

I−1∑
τ=0

(1− µ)I−1−τ{(1− a)2E[∥dt
i,τ−1 −∇fi(x

t
i,τ−1)∥2]

+ E[∥at
i,τ + bti,τ∥2]}

≤
I−1∑
τ=0

(1− µ)I−1−τ{(1− a)2E[∥dt
i,τ−1 −∇fi(x

t
i,τ−1)∥2]

+ 2E[∥at
i,τ∥2] + 2E[∥bti,τ∥2]}

b
≤

I−1∑
τ=0

(1− µ)I−1−τ{(1− a)2E[∥dt
i,τ−1 −∇fi(x

t
i,τ−1)∥2]

+ 2(1− a)2E[∥∇̃Bi,τ
fi(x

t
i,τ )− ∇̃Bi,τ

fi(x
t
i,τ−1)∥2]}

+

I−1∑
τ=0

(1− µ)I−1−τ{2a2E[∥∇̃Bi,τ
fi(x

t
i,τ )−∇fi(x

t
i,τ )∥2]

c
≤

I−1∑
τ=0

(1− µ)I−1−τ
{
(1− a)2E[∥dt

i,τ−1 −∇fi(x
t
i,τ−1)∥2]

+ 2(1− a)2L2E[∥xt
i,τ − xt

i,τ−1∥2] +
2a2σ2

B

}
≤

I−1∑
τ=0

(1− µ)I−1−τ
{
(1− a)2τE[∥dt

i,0 −∇fi(x
t
i,0)∥2]

+ 2L2
τ−1∑
k=0

(1− a)2τ−2kE[∥xt
i,k+1 − xt

i,k∥2]
}

+

I−1∑
τ=0

(1− µ)I−1−τ2a2
σ2

B

τ−1∑
k=0

(1− a)2τ−2−2k

d
≤ 2a2I

µB
σ2 +

2L2

µ

I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2].

(56)
In particular, a

= is because the cross term is 0 accord-

ing to Lemma 8. For
b
≤, it holds since E[∇̃Bi,τ fi(x

t
i,τ ) −

∇̃Bi,τ
fi(x

t
i,τ−1)] = ∇fi(x

t
i,τ ) − ∇fi(x

t
i,τ−1), and E[∥a −

E[a]∥2] ≤ E[∥a∥2] if considering a = ∇̃Bi,τ
fi(x

t
i,τ ) −

∇̃Bi,τ fi(x
t
i,τ−1). Moreover,

c
≤ is from Lemma 9. Regarding

d
≤, we have

∑I−1
τ=0(1 − µ)I−1−τ

∑τ−1
k=0(1 − a)2τ−2−2k ≤



∑I−1
τ=0(1 − µ)I−1−ττ ≤

∑I−1
τ=0 τ = I2

2 , and also
E[∥dt

i,0 − ∇fi(x
t
i,0)∥2] = 0 as dt

i,0 is initialized to be
∇fi(x

t
i,0), i.e., Line 8 in Algorithm 1. Similarly, we have∑I−1

τ=0(1 − µ)I−1−τ2a2
∑τ−1

k=0(1 − a)2τ−2−2k ≤ 2a2I
µ . Fur-

thermore,
∑I−1

τ=0(1−µ)I−1−τ
∑τ−1

k=0(1−a)2τ−2kE[∥xt
i,k+1−

xt
i,k∥2] ≤

∑I−1
τ=0(1 − µ)I−1−τ

∑τ−1
k=0 E[∥xt

i,k+1 − xt
i,k∥2] ≤

1
µ

∑I−1
τ=0 E[∥xt

i,k+1 − xt
i,k∥2]. Proof complete.

3) Proof of Lemma 5: Similar to proof of Lemma 3, then:

xt
τ+1 − xt

τ = ∆xt
τ+1 −∆xt

τ

=
∑τ

k=0
−(1− µ)τ−kηdt

i,k −
∑τ−1

k=0
−(1− µ)τ−1−kηdt

i,k

= −ηdt
i,τ + µη

∑τ−1

k=0
(1− µ)τ−1−kdt

i,k.

(57)
As a result, we can attain:

I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2]

=

I−1∑
τ=0

E
[∥∥∥−ηdt

i,τ + µη

τ−1∑
k=0

(1− µ)τ−1−kdt
i,k

∥∥∥2]
a
≤

I−1∑
τ=0

[
η2 + µ2η2

1− (1− µ)τ

µ

] τ∑
k=0

E[∥dt
i,k∥2]

≤ (1 + µ)η2E

I−1∑
τ=0

E[∥dt
i,τ∥2]

b
≤ 128η2I

µ
E[∥∇fi(x

t)∥2] + 24a2η2I3

B
σ2,

(58)

where
a
≤ uses Cauchy–Schwarz inequality and

b
≤ leverages

Lemma 3 and the fact that 1 + µ ≤ 3
2 .

D. Proofs for Global Momentum

1) Proof of Lemma 6: According to the definition of the
server momentum, we attain

E[∥ut∥2] ≤ 2β2E[∥ut−1∥2] + 2

η2I2
E
[∥∥∥∑

i∈St

wt
i(x

t
i,I − xt)

∥∥∥2]
= 2β2E[∥ut−1∥2] + 2

η2I2
E
[∥∥∥− I−1∑

τ=0

(1− µ)I−1−τηd̃t
τ

∥∥∥2]
= 2β2E[∥ut−1∥2] + 2

I2
E
[∥∥∥I−1∑

τ=0

(1− µ)I−1−τ d̃t
τ

∥∥∥2]
≤ 2β2E[∥ut−1∥2] + 2pmax

MI2

∑
i∈N

(256
3µ

E[∥∇fi(x
t)∥2]

+
16a2I2

B
σ2

)
+

4

3I

I−1∑
τ=0

E[∥dt

τ∥2],

(59)
where the last ≤ is from Lemma 10 as stated below and the
fact that µI ≥ 1.

Lemma 10. From Lemma 3, Assumption 2 and client selection
of Eq. (5), the aggregated momentum holds:

E
[∥∥∥I−1∑

τ=0

(1− µ)I−1−τ d̃t
τ

∥∥∥2] ≤ pmax

M

∑
i∈N

(256
3µ

E[∥∇fi(x
t)∥2]

+
16a2I2

B
σ2

)
+

2

3µ

I−1∑
τ=0

E[∥dt

τ∥2].

(60)

Proof. Note that ESt [d̃t
τ ] = E[dt

τ ] if only taking the expecta-
tion over the client selection. Following the definition, we can
rewrite:

E
[∥∥∥I−1∑

τ=0

(1− µ)I−1−τ d̃t
τ

∥∥∥2]
= E

[∥∥∥I−1∑
τ=0

(1− µ)I−1−τ (d̃t
τ − d

t

τ ) +

I−1∑
τ=0

(1− µ)I−1−τd
t

τ

∥∥∥2]
a
= E

[∥∥∥I−1∑
τ=0

(1− µ)I−1−τ (d̃t
τ − d

t

τ )
∥∥∥2]

+ E
[∥∥∥I−1∑

τ=0

(1− µ)I−1−τd
t

τ

∥∥∥2]
b
≤

I−1∑
τ=0

(1− µ)2I−2−2τE[∥d̃t
τ − d

t

τ∥2]

+

I−1∑
τ=0

(1− µ)2I−2−2τ
I−1∑
τ=0

E[∥dt

τ∥2]

≤
I−1∑
τ=0

(1− µ)2I−2−2τE[∥d̃t
τ − d

t

τ∥2] +
1

2µ− µ2

I−1∑
τ=0

E[∥dt

τ∥2]

≤
I−1∑
τ=0

E[∥d̃t
τ − d

t

τ∥2] +
2

3µ

I−1∑
τ=0

E[∥dt

τ∥2],

(61)

in which a
= holds as cross terms are 0 and

b
≤ uses the

Cauchy–Schwarz inequality. The remaining issue is to bound
the first term. Specifically:

E[∥d̃t
τ − d

t

τ∥2] = E[∥
∑
i∈N

(wt
i − pi)d

t
i,τ∥2]

=
∑
i∈N

E[∥(wt
i − pi)d

t
i,τ∥2]

=
∑
i∈N

ESt [(wt
i)

2 − p2i ]E[∥dt
i,τ∥2].

(62)

Considering that wt
i =

1
M

∑M
m=1 I(lm = i) with p(lm = i) =



pi,m, we acquire

ESt [(wt
i)

2 − p2i ] = ESt

[( 1

M

M∑
m=1

I(lm = i)
)2

− p2i

]
=

1

M2

M∑
m=1

ESt

[
I(lm = i)

M∑
m=1

I(lm = i)
]
− p2i

=
1

M2

M∑
m=1

[pi,m + pi,m(Mpi − pi,m)]− p2i

=
1

M2

(
Mpi +M2p2i −

M∑
m=1

p2i,m

)
− p2i

≤ pmax

M
.

(63)

Hence,
I−1∑
τ=0

E[∥d̃t
τ − d

t

τ∥2] ≤ pmax

M

∑
i∈N

I−1∑
τ=0

E[∥dt
i,τ∥2] ≤

pmax

M

∑
i∈N ( 2563µ E[∥∇fi(x

t)∥2] + 16a2I2

B σ2). Combining with
Eq. (61), we compete the proof.

2) Proof of Lemma 7: Since 1 ≤ µI ≤ 9
8 and µ ≤ 1

2 , there
exists a ρ ∈ [0, µ] such that (1 − µ)I = 1 − I(1 − ρ)I−1µ
according to mean value theorem. As a result, we attain

(1− µ)I = 1− I(1− ρ)I−1µ ≤ 1− I(1− µ)I−1µ

= 1− I(1− µ)I
µ

1− µ
≤ 1− (1− µ)I ,

(64)

which leads to (1−µ)I ≤ 1
2 . On the other hand, we also have

(1− µ)I ≥ [(1− 9
8I )

8I
9 ]

9
8 ≥ 1

4 .

Based on Assumption 1, the L-smoothness, we have

E[f(xt+1)]

≤ E[f(xt)] + E[⟨∇f(xt),xt+1 − xt⟩] + L
2E[∥x

t+1 − xt∥2]

= E[f(xt)] + ηIE[⟨∇f(xt),−ut⟩] + 2L

3
η2I2E[∥ut∥2]

−
(2L

3
− L

2

)
η2I2E[∥ut∥2]

= E[f(xt)] + ηβEE[⟨∇f(xt),−ut−1⟩]

+ E[⟨∇f(xt),−η

I−1∑
τ=0

(1− µ)I−1−τ d̃t
τ ⟩]︸ ︷︷ ︸

Y

+
2Lη2I2

3
E[∥ut∥2]− Lη2I2

6
E[∥ut∥2].

(65)

We analyze the term I using Lemmas 2-10. In particular,

Y ≤ η

I−1∑
τ=0

(1− µ)I−1−τ
(
−1

2
E[∥∇f(xt)∥2]− 1

2
E[∥dt

τ∥2]
)

+ η

I−1∑
τ=0

(1− µ)I−1−τ L
2η2

∑
i∈N p2i

3µ

∑
i∈N

τ−1∑
k=0

E[∥dt
i,k∥2]

+ η

I−1∑
τ=0

(1− µ)I−1−τ

∑
i∈N p2i
2

∑
i∈N

E[∥eti,τ∥2]

l4
≤ −η 1−(1−µ)I

2µ E[∥∇f(xt)∥2]− η(1−µ)I

2

∑I−1
τ=0 E[∥d

t

τ∥2]

+
L2η3 ∑

i∈N p2
i

3µ2

∑
i∈N

I−1∑
τ=0

E[∥dt
i,τ∥2]) +

ηa2IN
∑

i∈N p2
i

µB σ2

+
L2η

∑
i∈N p2i
µ

∑
i∈N

I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2]

l3
≤ − η

4µ
E[∥∇f(xt)∥2]− η

8

I−1∑
τ=0

E[∥dt

τ∥2]

+
L2η3

∑
i∈N p2i

3µ2

∑
i∈N

(256
3µ

E[∥∇fi(x
t)∥2] + 16a2I2

B
σ2

)
+

ηa2IN
∑

i∈N
p2
i

µB σ2 +
L2η

∑
i∈N

p2
i

µ

∑
i∈N

I−1∑
τ=0

E[∥xt
i,τ+1 − xt

i,τ∥2]

l5
≤ − η

4µ
E[∥∇f(xt)∥2]− η

8

I−1∑
τ=0

E[∥dt

τ∥2]

+
L2η3

∑
i∈N p2i

3µ2

∑
i∈N

(256
3µ

E[∥∇fi(x
t)∥2] + 16a2I2

B
σ2

)
+

ηa2IN
∑

i∈N p2i
µB

σ2

+
L2η

∑
i∈N p2

i

µ

∑
i∈N

(
128η2I

µ E[∥∇fi(x
t)∥2] + 24a2η2I3

B σ2
)

≤ − η

4µ
E[∥∇f(xt)∥2]− η

8

I−1∑
τ=0

E[∥dt

τ∥2]

+ (
256

9
+ 144)

L2η3
∑

i∈N p2i
µ3

∑
i∈N

E[∥∇fi(x
t)∥2]

+
(ηa2EN

∑
i∈N p2i

µB
+

16L2η3a2I2N
∑

i∈N p2i
3µ2B

)
σ2

+
24L2η3a2I3N

∑
i∈N p2i

µB
σ2,

(66)
where the last ≤ also uses the fact that µI ≤ 9

8 to replace I
with µ. Besides, l3− l5 denote Lemmas 3-5, respectively.

As for ηβIE[⟨∇f(xt),−ut−1⟩], we know that

ηβIE[⟨∇f(xt),−ut−1⟩]

≤ ηβI
( 1

8µβI
E[∥∇f(xt)∥2] + 2µβIE[∥ut−1∥2]

)
=

η

8µ
E[∥∇f(xt)∥2] + 2ηµβ2I2E[∥ut−1∥2].

(67)



Based on Lemma 6, we can analyze 2Lη2I2

3 E[∥ut∥2]:

2Lη2I2

3
E[∥ut∥2] ≤ 4Lη2β2I2

3
E[∥ut−1∥2]

+
Lη2pmax

M

∑
i∈N

(1024
9µ

E[∥∇fi(x
t)∥2]

+
64a2I2

3B
σ2

)
+

8Lη2I

9

I−1∑
τ=0

E[∥dt
τ∥2].

(68)

Because LηI ≤ Lη
µ ≤ 9

64 , we have η
8

∑I−1
τ=0 E[∥d

t

τ∥2] ≥
8Lη2I

9

∑I−1
τ=0 E[∥d

t

τ∥2].
Further denote C = ( 2569 +144)

L2η3 ∑
i∈N p2

i

µ3 + 1024Lη2pmax

9µM

and C ′ =
ηa2IN

∑
i∈N p2

i

µB +
16L2η3a2I2N

∑
i∈N p2

i

3µ2B +
24L2η3a2I3N

∑
i∈N p2

i

µB + 64Lη2a2I2Npmax

3MB . Hence, Eq. (65) be-
comes

E[f(xt+1)] ≤ E[f(xt)]− η
8µE[∥∇f(xt)∥2] + C

∑
i∈N

E[∥∇fi(x
t)∥2]

+ C ′σ2 +
(
2ηµβ2I2 + 4Lη2β2I2

3

)
E[∥ut−1∥2]− Lη2I2

6 E[∥ut∥2].

E. Proof of Lemma 8

We prove this result by induction. Note that if any client
is not selected in FedMoS, we consider a virtual local
updating is conducted as well. First, when τ = 0, we
have EBi,0

[dt
i,0] = EBi,0

[
1
B

∑
ξi∈Bi,0

∇fi(x
t
i,0, ξi)

]
=

1
BB∇fi(x

t
i,0) = ∇fi(x

t
i,0). Now suppose that

E∏m
k=0 Bi,k

[dt
i,m] = ∇fi(x

t
i,m) stands for m > 0, we

show that E∏m+1
k=0 Bi,k

[dt
i,m+1] = ∇fi(x

t
i,m+1). Based on

FedMoS, we attain

E∏m+1
k=0 Bi,k

[dt
i,m+1]

= E∏m+1
k=0 Bi,k

[ 1
B

∑
ξi∈Bi,m+1

∇fi(x
t
i,m+1, ξi)

]
+ E∏m+1

k=0 Bi,k
(1− a)

[(
dt
i,m − 1

B

∑
ξi∈Bi,m+1

∇fi(x
t
i,m, ξi)

)]
= EBi,m+1

[
E∏m

k=0 Bi,k

[ 1
B

∑
ξi∈Bi,m+1

∇fi(x
t
i,m+1, ξi)

+ (1− a)
(
dt
i,m − 1

B

∑
ξi∈Bi,m+1

∇fi(x
t
i,m, ξi)

)]∣∣∣ m∏
k=0

Bi,k

]
= EBi,m+1

[ 1
B

∑
ξi∈Bi,m+1

∇fi(x
t
i,m+1, ξi)

]
+EBi,m+1

[
(1− a)

(
∇fi(x

t
i,m)− 1

B

∑
ξi∈Bi,m+1

∇fi(x
t
i,m, ξi)

)]
= ∇fi(x

t
i,m+1) + (1− a)(∇fi(x

t
i,m)−∇fi(x

t
i,m))

= ∇fi(x
t
i,m+1).

(69)

F. Proof of Theorem 2

According to Algorithm 2, Pi records the accumulated as-
signed weight to client i. When Pi reaches Mpi, the client will
not be selected anymore, that is

∑M
m=1 pi,m = Mpi. As for

the total probability in each selection, we leverage an indicator

sum to ensure that
∑

i∈N pi,m = 1. Because
∑

i∈N pi = 1

and
∑M

m=1 pi,m = Mpi, namely both constraints in Eq. (26)
are satisfied, then we have E[wt

i ] = pi,∀i ∈ N , i.e.,
Algorithm 2 is unbiased.


